Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We elucidate the requirements for quantum operations that achieve environment-assisted invariance (envariance), a symmetry of entanglement. While envariance has traditionally been studied within the framework of local unitary operations, we extend the analysis to consider non-unitary local operations. First, we investigate the conditions imposed on operators acting on pure bipartite entanglement to attain envariance. We show that the local operations must take a direct-sum form in their Kraus operator representations, establishing decoherence-free subspaces. Furthermore, we prove that this also holds for the multipartite scenario. As an immediate consequence, we demonstrate that environment-assisted shortcuts to adiabaticity cannot be achieved through non-unitary operations. In addition, we show that the static condition of the eternal black hole in AdS/CFT is violated when the CFTs are coupled to the external baths.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract The Kirkwood-Dirac quasiprobability distribution, intimately connected with the quantum correlation function of two observables measured at distinct times, is becoming increasingly relevant for fundamental physics and quantum technologies. This quasiprobability distribution can take non-positive values, and its experimental reconstruction becomes challenging when expectation values of incompatible observables are involved. Here, we use an interferometric scheme aided by an auxiliary system to reconstruct the Kirkwood-Dirac quasiprobability distribution. We experimentally demonstrate this scheme in an electron-nuclear spin system associated with a nitrogen-vacancy center in diamond. By measuring the characteristic function, we reconstruct the quasiprobability distribution of work and analyze the behavior of its first and second moments. Our results clarify the physical meaning of the work quasiprobability distribution in the context of quantum thermodynamics. Finally, we study the uncertainty of measuring the Hamiltonian of the system at two times, via the Robertson-Schrödinger uncertainty relation, for different initial states.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
